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Summary. 

This paper presents an analytical description of the fluid flow in a partially-filled cylinder rotating at a 
sufficiently high rate that the fluid forms a film of uniform thickness against the sidewall. Relative flow is 
induced by differential rotation of the upper endcap of the cylinder. When the film thickness is large enough, 
the main body of the fluid is in geostrophic balance, viscous effects being confined within thin shear layers at 
the flow boundaries. At the horizontal endcaps these layers are of Ekman type, while Stewartson layers arise at 
the sidewall and at the free surface. In contrast with the Stewartson layer at the sidewall, which has a sandwich 
structure consisting of layers of thicknesses E 1/4 and E 1/3, viscous effects at the free surface are concentrated 
in a single layer of thickness E 1/~ (E is the Ekman number). The theoretical velocity profiles are compared with 
numerical and experimental profiles presented by Shadday, Ribando and Kauzlarich [1] and the agreement is 
very good. The comparison is also made in the thin-film situation where the Stewartson layers partially overlap, 
and again the theoretical profiles agree fairly well with the numerical and experimental results. 

1. Introduction 

The relative fluid flow in a rapidly rotat ing cylinder has at tracted m a n y  investigators, and 
a large number  of  studies on the subject have appeared. Due  to their relevance to 
geophysical and engineering problems, rotat ing fluids have been studied in a variety of 
configurations, ranging f rom wind-driven ocean models to models of  gas centrifuges as 
used for the enrichment of natural  uranium. 

Under  certain conditions the main body  of  a contained rotat ing fluid can be in 
geostrophic balance, with viscous effects being confined within thin layers at the solid 
boundaries.  The shear layers arising at the horizontal  flow boundaries are called Ekman  
layers, which m ay  also occur at a free upper  surface if shear is exerted there. Another  type 
of  shear layer arising in a contained rotat ing fluid is the so-called Stewartson layer; 
usually it is present at lateral boundaries of  the flow (see e.g. Johnson  [2], Conlisk and 
Walker  [3,4], van Heijst [5]), but  it m ay  also occur as a detached layer induced by  bo t tom 
topography,  by moving objects, or by  singularities on the horizontal  boundaries,  see e.g. 
Stewartson [6], Moore  and Saffman [7], Hash imoto  [8]. Stewartson layers generally have a 
sandwich structure consisting of  an outer  layer of  thickness E 1/4 and an inner layer of  
thickness E 1/3, with E the Ekman  number  of  the flow. 

Though  the majori ty of  studies on rotat ing shear layers were devoted to configurat ions 
of  fluid in a completely filled container (with a solid lid as an upper  boundary) ,  a number  
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of investigators has examined the effect of a stress-free upper surface on the circulation in 
a partially-filled rotating cylinder. Shadday, Ribando and Kauzlarich [1] have recently 
investigated the flow in a partially-filled cylinder rotating at extremely high rate, such that 
all the fluid is confined in a film of approximately uniform thickness at the sidewall. Thus 
a vertical free surface arises, on which the shear stress vanishes. Weak relative fluid 
motion is induced by differential rotation of the upper endcap of the cylinder. Shadday et 
al. have carried out accurate velocity measurements by use of a laser-Doppler velocimeter 
and these results were compared with numerical calculations of the flow. The numerical 
model, based on the finite-difference technique, yielded solutions to the full nonlinear 
axisymmetric governing equations, and showed good agreement with the experimental 
results. From their work it appears that, in the case that the upper endcap rotates faster 
than the cylinder, the upper Ekman layer produces a radially-outward flow, which is 
forced downward along the cylinder sidewall via a Stewartson shear-layer. An Ekman 
layer at the bottom disk carries the fluid radially inwards, and, due to the differential 
Ekman suctions, a weak axial return flow occurs in the fluid interior. As the geostropic 
flow in axial direction is very weak, a significant portion of the axial return flow is 
concentrated in a thin Stewartson-type shear layer at the free surface. 

The objective of the present paper is to examine this flow configuration analytically, 
i.e. by using the familiar perturbation technique generally applied in Stewartson-layer 
theory. This theoretical approach is thought to be useful because the results obtained by 
Shadday et al. [1] offer the opportunity to verify the accuracy of the "classical" 
Stewartson-layer analysis. Accurate velocity measurements in Stewartson layers are 
scarce, mainly due to serious restrictions posed by the small thickness of such shear layers 
in laboratory configurations. Until recently, velocity measurements in rotating shear 
layers were carried out by applying the thymol-blue technique described by Baker [9]. 
This visualization technique has been used to measure velocities in Stewartson's [6] 
split-disk configuration and, though the qualitative agreement between the theoretical and 
experimental profiles was satisfactory, the magnitude of the theoretical velocity was in 
some cases found to exceed the experimental value by about 30%, see Baker [10]. Some 
years later, Cook and Ludford [11] included curvature effects in the theoretical shear-layer 
analysis, and thus reduced the discrepancy between theory and experiment by about 7%. 
This improvement is still insufficient to explain the whole 30%-gap, and the remaining 
discrepancy was attributed to nonlinear effects. 

Although the analysis in the present paper is essentially linear, the agreement with the 
numerical results obtained by Shadday et al. [1] is very good. Formally, the theoretical 
description only applies to the "thick-film case", in which the film thickness is large 
enough as that the Stewartson shear-layers at the sidewall and at the free surface are 
separated by a geostrophic interior region. Shadday et al. have also examined the 
"thin-film case", where the inviscid interior has vanished and the Stewartson layers 
merge; for this case a correction is needed in the shear-layer analysis, and it turns out that 
the theoretical results agree fairly well with the numerical calculations. 

The experimental results obtained by Shadday et al. are generally in accordance with 
the numerical and analytical velocity profiles, though near the free surface some devia- 
tions occur both in the azimuthal and in the vertical velocity components (the observed 
magnitudes are lower than those calculated analytically or numerically). It is believed that 
the discrepancy has some instrumental origin, as the numerical and theoretical curves do 
correspond there. 
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2. Formulation 

Consider the flow configuration as schematically depicted in Figure 1. Due to the high 
rotation rate f~ the fluid in the partially-filled rotating cylinder (radius bL, height HL) is 
concentrated in a thin film at the sidewall. The film thickness is assumed to be uniform, 
and measures (b-  a)L. The upper endcap of the cylinder rotates slightly faster with 
angular velocity (1 + ~)f2, 0 < c << 1. In the following the fluid flow is related to a 
co-rotating cylindrical coordinate system (r, 0, z), with z pointing in the axial direction; 
the corresponding velocity components in radial, azimuthal and axial direction are 
denoted by (u, v, w). Lengths and velocities are non-dimensionalized by L and e~L, 
respectively. Assuming that the relative motion is small enough as to neglect nonlinear 
effects, the steady flow of an incompressible fluid relative to the rotating frame is 
governed by 

2k × v = - Vp + EV 2v, ( la)  

v . v  = 0, Ob) 

with v the velocity vector, p the reduced pressure, and k = fi/~2 the unit vector in axial 
direction; E is the Ekman number, defined as E = ~,/~L 2, u being the kinematic fluid 
viscosity. The objective of the subsequent analysis is to provide a solution to (1) in the 
region a ~< r 4 b, 0 ~< z ~< H under the conditions 

v = ( 0 , 0 , 0 )  at ( z = 0 ,  a<~r<~b) and ( 0 ~ < z < H ,  r=b), 
v : ( 0 ,  r , 0 )  at (z=H, a<<,r<b), (2) 

and vanishing shear stress at the free surface (r = a, 0 < z < H). 

~T=(I+ (;).Q 

z=H 

I fluid 

air 

~ z = O  

..QB =. Q --I 
Figure I. A schematic diagram of the flow configuration. 
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When the film thickness is large enough, the flow at some distance from the solid 
boundaries is in geostrophic balance, and is governed by the Ekman layers at the 
horizontal endcaps (z = 0, H). By use of the well-known Ekman suction conditions one 
derives 

u I =  O, v I = l r ,  w 1 = 1El l2 ,  (3) 

where the subscript I refers to the interior. The geostrophic motion is apparently one of a 
solid-body rotation plus a weak axial flow O(E a/2) towards the faster rotating endcap. At 
the horizontal boundaries the Ekman layers carry radial O(E a/2) transports Q of 
magnitude 

Q ( z = 0 )  = -¼rE 1/2, Q ( z = H ) =  +¼rE 1/2. (4) 

It is now clear that the Stewartson layer at the cylinder sidewall (r = b) has a double task 
in providing a smooth transition to zero for the interior swirl velocity and besides 
producing an O(E 1/2) transport from the upper to the lower Ekman layer. Axial return 
flow O(E 1/2) takes place in the geostrophic interior, but as this is not sufficient, another 
Stewartson layer arises at the free surface (r = a) in order to provide an additional 
vertical O(E 1/2) flux. 

3. The thick-film case 

In this case it is assumed that the thicknesses of the Stewartson shear layers at the free 
surface and at the sidewall are small compared to the film thickness, so that the shear 
layers are separated by a non-viscous interior flow region. 

3.1. The boundary layer at the sidewall 

The shear layer at the cylinder wall is of Stewartson type, and has a sandwich structure 
consisting of two layers of thicknesses E 1/4 and E 1/3. The thicker E a/4 layer usually 
provides the matching of O(1) velocities and produces some vertical O(E 1/2) transport, 
while the essential task of the E 1/3 layer lies in performing the higher-order matching and 
in completing the vertical O(E 1/2) flux. As their structure has extensively been examined 
in previous studies (see e.g. [2,5,6,7,13]), the present discussion of the Stewartson E 1/4 
and E 1/3 layers will be brief. 

3.1.1. The E 1/4 layer 
The velocity components and the pressure in the E 1/4 layer are expanded as 

o o  

(u ,  v,  w,  p )  = ~ (E1 /2U (s), V (s), E1/4W (j), E1/4p(j)) E j~4, 
j=O 

(5) 



and substitution into (1) yields, after elimination of the pressure: 

Uz (0'1) = Vz (0'1) = Wz(z 0'1) = 0,  

V~(~°~ + 2Wz (°) = 0, 

2 
) + + 2 w f ) =  0, 

2u(O,  1) = V(f  A) ' 
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(6a) 

(6b) 

(6c) 

(6d) 

where ~= ( r - b ) E  -W4 is the stretched radial coordinate. The Ekman layers at the 
endcaps impose the following suction conditions 

1 ( 1 V ( 0 )  ) + ( ½ T - I ) ,  z = ( ½ T ½ ) H .  (7) w(O) = _ 1v(O) ,  w ( l )  = ___ b q._ V(1) 

By use of these, one derives from (6) an equation for V(°): 

_ 2 = o ,  ( 8 )  V~ (°)~ V~ (°) 

the solution of which should satisfy the matching requirements V(°)(~-+ - ¢ c ) =  vt(b ) 
and V(°)(~ = 0) = 0. For the leading-order terms ( j  = 0) one finds 

V(°)(~) = ½b[1 - exp(s~)] ,  

a 1 
W(°'(~, z ) = - T b s ( ~ - H ) e x p ( s , ) ,  (9) 

u(O)(~ ) b 
2 H  exp(s~), 

with s = v ~ / H .  The V (°) solution shows a correct adjustment to relative rest at the 
sidewall, but U (°) and W (°) do not satisfy the condition of no-slip at ~ = 0, which 
necessitates the presence of the E 1/3 layer to carry out the higher-order matching (this 
will be discussed later). 

Similarly, one derives for the next-order azimuthal velocity 

which has the following general solution 

V(1) (~)  = A + B exp(s~) + 1~ exp(s~) + ½~. (11) 

The constants A and B are determined by matching to the interior (~ --) - ~ )  and to the 
inner E 1/3 layer at ~ = 0. In the limit r --* b the interior swirl velocity is 

vl(r  ~ b) = Vl(b ) + E'/4~°~-t- + O ( E 1 / 2 ) ,  (12) 
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and should match smoothly to the composite E1/4-1ayer velocity 

V(~ ---) - ~ )  = V(°)(~ ---) - ~ )  -I- E1/4V(1)(~ --.1. - 00) .-I- O ( E  1/2 ) 

= ½b + (A + ½~)E 1/4 "1- O(E1/2 ) .  (13) 

This obviously requires A = 0. From the EW3-1ayer analysis it appears that the matching 
of the O(E 1/4) swirl velocities in the outer and the inner layer demands V°)(~ = 0) = 0, 
and therefore B = 0. The solution for V °) is completely determined then, and that for 
W (a) follows directly from (6c), yielding 

V(1)(~) ~- ½~[1 + ½ exp(s~)], 

1 
W(1)(~, z) = l ( s ~ - - 1 ) ( ~ -  H ) e x p ( s ~ ) +  ½. 

(14) 

As W °) does not satisfy the no-slip condition at the sidewall (~ = 0), the adjustment to 
zero has to be performed by the inner E 1/3 layer. 

The vertical O(E 1/2) transport carried by the E a/a layer is 

z) T ( z ) =  o w(O)(~ ' z) d ~ = -  ~ - - ~  b, ( 1 5 )  

and it is obvious that an additional flux contribution is needed from the E 1/3 layer, in 
order to produce a net downward transport of magnitude ]bE 1/2, see (4), from the upper 
to the lower Ekman layer. 

3.1.2. The E 1/3 layer 
The E1/3-1ayer quantities are expanded in powers of E 1/12 according to 

(x) 
(U, 13, W, p)-~- E (E1/3uj  , ~)j, ~41j, E1/3~j)E j/12, (16) 

j=O 

and for the terms up to j = 7 one derives by substitution of (16) into (1): 

= , 2 - - =  ( 1 7 )  
2-~" z 3'03 az 0,0 3 

and 

(18) 
2fij = ~'02, 

with "0 = ( r -  a )E-1 /3  the scaled radial coordinate. 
As mentioned in the previous section, the E 1/3 layer must accomplish a matching of 

U {°), W (°), V (1) and W m to the cylinder sidewall, and besides it must produce a vertical 
O(E 1/2) flux of magnitude 

bz (19) 
T(z)  = 2H  
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in order to close the transport of fluid from the upper to the lower Ekman layer. 
Inspection of (16) learns that this can be performed by the j = 2, 3, 6 fields of the layer; 
the j = 0, 1, 4, 5 fields play no role of importance and can be regarded as being absent. 

The j = 2 field must both accomplish the U~°)-matching and produce the required 
vertical transport (19). Analysis of the Ekman extensions of the E 1/3 layer yields the 
following suction conditions: 

~2 = 0 (z = 0), (20) 
w2 = -b3(~ / )  (z = H) ,  

and the conditions with respect to 71 are 

u 2 ,o  2 , w  2 + 0 ,  ( ' 1 ~ - o o ) ,  (21a) 

u2 = - U~°'(0) = - ½ b / H l ( ~  = 0). (21b) 
~2 = ~'z = u. ) 

Solutions to (17), (18) satisfying these conditions can be found by standard techniques, 
giving 

oo 

~2(~, z ) =  - E A. ,~(7 . ;  71) sin n~r-----Zz 
H '  

n = l  

nwz (22) ~2(n, z) = - A.~I(~.;  7) cos ---if-, 
n = l  

oo 
n~r2 

~2(n, z ) =  +¼ E A.~.~[+,(v.;  n ) +  ¢~+2(~.;  n)] cos --#-- 
n = l  

with 

A, - 4 b  ( - 1 ) "  Y, = (2n~r /H) l /3  
/ ~  vd ' 

and 

q~l(Y.; ~1) = e-1/2v"lnl sin ½y. In Iv~- 
q~2(Y.; ~/)= e-1/2v"l'l cos ½Y.~/v~-. 

(23) 

It is easy to verify that integration of the vertical velocity over the layer thickness indeed 
yields a transport as given by (19). 

The j = 3 field of the E 1/3 layer has to perform the matching of W ~°) and V (1) to the 
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cylinder wall. The appropriate boundary conditions are therefore 

U3' 03, 1~3 "') 0 (17 "-'-) - - ~ ) ,  

fi3 = 0 ] 

~ = - v ( ' ( ~  = o) ~(,7 = o) (1 
~ = - w ( ° ) (  ~ = o )  = ½bs  - - ~  , 

(24a) 

(24b) 

to be completed by the Ekman suction conditions, which take (in the absence of the j = 1 
field) the following form: 

w3=0 ( z = 0 ,  H) .  (24c) 

The higher-order swirl velocity V(a)(~ = 0) in the E 1/4 layer is given by (11), with A = 0 
and B still unknown. Though details are not presented here, it follows from the matching 
analysis that V (1) must satisfy V ° ) ( ~ = 0 ) = 0 ,  which determines the O(E 1/4) swirl 
velocity in the E 1/4 layer. Again, solving the equations (17) and (18) with respect to the 
conditions (24) is a standard problem, yielding 

ff3(~/, z ) =  ~ Bn(d?3 +~b2-~1v/3 -) sin n~r_.___~z 
H '  n = l  

nrrz (25) ~(~, z ) =  - E ~e.(,c,~-,t,~ + ~¢3 - )  cos -if-, 
n = l  

/'l "ffZ 
~( , ,  z ) =  - ~  B , , . r ~ ( ~ - , : - q , , ~ )  cos -if-, 

n = l  

with 

B.= ( -1 )"  + 1 
4nrr bs, q~3=~3(~,; ~ ) = e x p ( - y ,  17ll) (26) 

and ~1, Oz being given by (23). Integration of if3 over the layer thickness shows that there 
is no net vertical transport O(E 7/12) in the E 1/3 layer: the motion to this order is merely 
recirculatory. 

The j = 6 field of the E 1/3 layer has to accomplish the matching of W (1), which is only 
O(E1/2); though its contribution to the shear-layer structure seems of minor importance, 
the results of the j --- 6 field analysis are mentioned here for reasons of consistency, as the 
vertical velocity in the E a/4 layer is also calculated to O(E1/2). The boundary conditions 
for this field are: 

U6, /36, 1~ 6 ~ 0 ( ~  ~ -- ~ ) ,  ( 2 7 a )  

1 ( 1  H )  (~ =0) ,  W6 = --  w ( X ) ( ~ = 0 )  ---- -~ -~ - --  ½ 
(27b) 

w6=0 ( z = 0 ,  H) .  (27c) 
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In view of the suction conditions (27c), the general ~6 solution is written as a Fourier 
sine-series, and by using the series properties (see e.g. Tolstov [12]) 

~ 1 sin nrrz . . . .  ~r( H )  ~ (--1)n sin nrrz ~rz 
n H ~ 1 , - -  (28 t n H 2 H '  n = l  n = l  

the matching condition for ~6 can be formulated as 

ffr(,/=O) = _ ~ 3 - 5 ( - 1 ) "  sin nrr____~z (29) 
4n~r H " n = l  

The solutions for if6 and 06 a r e  then easily found to be 

@6(~1, z) = ~ C.(~3+qb2_q~lVFS)sin n~r__.__zz 
H ' n=l 

n ~ z  
V6(n, Z') = E Cn(-t~3-}-t~2-t~l~) COS y ,  

n = l  

(30) 

with 

C , = - [ 3 - 5 ( - 1 ) " ] / 8 n r r  

and q~l, t~2, ~3 given by (23) and (26). 
This completes the analysis of the Stewartson layer at the sidewall: the azimuthal and 

vertical velocity components in the shear layer have been determined to O(E 1/4) and 
O(E 1/2) accuracy, respectively. 

3.2. The boundary layer at the free surface 

As pointed out in Section 2, the shear layer occurring at the free surface (r = a) must 
accomplish a return flow O(E 1/2) from the lower to the upper Ekman layer. The free 
surface allows the occurrence of non-zero azimuthal and vertical velocities, and therefore 
no O(1) matching is required like at solid boundaries. For this reason the E 1/4 layer is 
absent here, and the return flow must be entirely produced by the j = 2 field of the E ]/3 
layer. 

With regard to the analysis of the E 1/3 layer at r = a it is useful to define the stretched 
radial coordinate as 71 = (r - a)E-1/3, which is positive as r >/a. The dynamical E1/3-1ayer 
quantities are scaled as in (16), and are governed by the equations (17) and (18). 

The boundary conditions for the j = 2 field are 

fi2, 52, w2--+ 0 (n ~ + oo), (31a) 

~V2 ~W2 
fi2=0, ~ = 0 , - - ~ - = 0  (7/=0),  (31b) 

and analysis of the Ekman extensions at the horizontal boundaries yields 

if: = ½aS(~/), (z  = 0, H ) .  (31c) 
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As in other problems, the general solutions can be written as Fourier series, viz. 

cx~ 

% = E ( a l p ,  + b.¢ 2 + c.ep3 ) sin nor____~z 
H ' n = l  

n 'FZ 
~j = - E (a°, ,  + b.¢~ - c°~)  cos --if-, 

(32) 

with ~1,  ~2 ,  ~3 as before, and applying the boundary conditions (31) yields relations from 
which the coefficients a. ,  b. and c. can be found. Once ~j is determined, fij follows 
immediately from (18). For the j = 2 field this results in 

~(~, ~)= E D . ( , ,  + , 2 ¢ ~ )  sin "~__A 
H ' n = l  

09 
n ~rz 

~2(~/, z ) =  - E D,(qh + q,2v/3) cos H ' (33) 

] oo /~'FZ 

~2(~, z ) =  - 7  E D.~.~(*,- ~2d) cos --if-, 
n = l  

where 

a 1 -  ( -1 )"  
D. = / ¢ v 5  y.~ 

It can be verified by integrating if2 with respect to ~1 that this field produces a vertical 
O( E v 2 )  flux 

f0%2(~, z) d~ = k~, (34) 

which is exactly the required magnitude. This completes the analysis of the O ( E  ~/2) 
circulation in the fluid film. 

4. The thin-film case: merging Stewartson layers 

When the film thickness is decreased to a small value, the geostrophic interior region 
vanishes, and the Stewartson layers at r = a and r = b will merge. In this section attention 
is focussed on the situation of a film thickness of the same order as the Ea/4-1ayer 
thickness, i.e. ( b -  a ) -  EW4(> EW3). This implies that the film is entirely occupied by 
the E 1/4 layer, and, although the E 1/3 layers will merge, it is assumed that theft structure 
is not affected by the proximity of the boundaries. For a thick film, i.e. (b - a) > E l/a,  
the azimuthal velocity in the E 2/4 layer is to O ( E  1/4) given by equations (9a) and (14a), 
and tends to the interior swirl velocity as ~ ~ - ~ .  When the film has a small thickness 
(b - a) ~ E ~/4 the E ~/4 layer no longer shows a transition to a solid-body rotation (due 
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to the non-existence of the geostrophic interior), and induces a nonvanishing shear stress 
at the free surface: 

O F  r = a  = E-I~4  0V(°) ~o 0V(1) 0~ + 0~ ~o + ° ( e l / 4 ) '  (35) 

with ~a = ~ ( r  = a) = (a - b ) E  -1/4. To leading order, i.e. to O(E-1/4), substitution of (9a) 
and (14a) yields 

O"£V r= = -- ½sbE- 1/4 exp(s~a ). (36) 

This obviously requires a correction by an E a/4 layer at the free surface, as this surface 
must be free of any stresses. A similar situation has been examined in a recent paper by 
Ungarish and Greenspan [14]. The E 1/4 layer at r = a is also governed by the equations 
(6)-(8), now with ~* = ( r - a ) E  -1/4 as the radial coordinate. Equation (8) has the 
following non-divergent solution for the correction azimuthal velocity: 

V*(~*) =A + B  exp( -s~*) ,  (37) 

in which the unknown coefficients can be determined by requiring 

0V*[ = ½sb exp(s~a), (38) v*(~*-~ ~) =0, 0~* I~.=o 

yielding 

A = 0 ,  B = - ½ b e x p ( s ~ a ) .  (39) 

From these results it is obvious that the correction velocity vanishes as  ~a ~ -  ~" 
Associated with the azimuthal velocity, there is also a vertical correction velocity, 

(1 
W * ( ~ * ,  z ) =  - B s  - ~ e x p ( - s ( * ) ,  (40) 

which is 0(E1 /4 ) .  The vertical O(E 1/2) flux produced by this correction field must be 
counteracted by a correction j = 2 field in the Stewartson E 1/3 layer at the free surface. 
The general (non-divergent) solutions for this correction field are again given by (32), 
with 7/replaced by ~l* = ( r -  a ) E  -1/3, and the coefficients can be found by applying the 
boundary conditions 

an* o, an* = °  (n=o) ,  (41a) 

(41b) 
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This yields 

w2*(~* z ) =  ~ E.(O1 +02v/3)s in  n~r__~z 
' H ' n=l 

09 
~.[  . n~rz 

2 , . ,  z ) =  - E eo(~, +.2d)  cos --y- 
n=l 

(42) 

with 

B 1 + ( - 1 )  ~ 
E~ 

and ~1, 02 being given by (23). 

5. Comparison with observations and numerical  results 

The experimental and numerical work performed by Shadday et al. [1] offers the 
opportunity to verify the validity of the linear analysis presented in the previous sections. 
These investigators have carried out accurate velocity measurements in a rotating cylinder 
of radius R = b L  -- 9.45 cm and height H = H L  = 19.43 cm (L is the scaling parameter). 
In all experiments the angular speed of the cylinder measured 1000 r.p.m., while the 
upper endcap had a fixed overspeed of c -- + 5%. Results were obtained for two values of 
the film thickness (b  - a ) L ,  viz. a thick film of 4.22 cm and a thin film of 1.91 cm, 
corresponding to inner radii of a L  = 5.23 cm and 7.54 cm, respectively. The scaring factor 
is here taken to be L = 9.45 cm, so that b = 1 and H = 2.056. In the terminology of 
Shadday et al., the Ekman number E* is defined as E * =  v / ( f2H 2) and measures 
2.5 × 10 -6, which implies that the Ekman number E as introduced in Section 2 has a 
magnitude of 

E = ( E* = 1.06 X 10 -5. (43) 

In the so-called thick- f i lm case a substantial portion of the fluid is in geostrophic 
balance, and viscous effects are confined to relatively thin layers at the flow boundaries. 
Figures 2a and 2b show combined diagrams of the composite analytical velocities in 
vertical and azimuthal direction: 

W =  E2/12(~4~2a q'- W2b) + E3/12(~V3b q- W(°)) -t- E6/12(~-%b "b W (1)) -t- O(E7/12), 

(44) 

V =  Ul '[- V(°)  hi- E2/12( U2a -1- U2b) -~- E3/12( O3b At" V(1)) dr O(E4/12) ,  (45) 

where the subscripts a and b refer to the radius of the boundary which the shear layer is 
attached to. Also shown are the numerical results taken from Shadday et al. ([1], Figures 
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Figure 2. Radial distribution of the axial (a) and the azimuthal (b) velocity at z = 0.5H; film thickness = 4.22 
cm, E = 1.06 × 10-5,  c = 0.05. Analytical profiles are represented by solid lines, while the broken line and the 
dots represent numerical data obtained by Shadday et al. [1]. Velocities are scaled by the perturbation velocity 
U = cf~L, and the radial position is normalized by the film thickness, i.e. ~ = ( r  - a ) / ( b  - a ) .  
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10 and 11). The radial coordinate is defined as ? = ( r  - a ) / ( b  - a), and the velocities are 
scaled by the imposed perturbation velocity U = f f ~ L .  The agreement between the 
analytical and numerical results is very good. This is remarkable as nonlinear effects have 
(in contrast with the numerical model) been neglected in the analysis, while the condition 
c < O(E z/4) for linear flow (cf. Bennetts and Hocking [15]) is not convincingly satisfied in 
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Figure 3. Radial distribution of the axial (a) and azimuthal (b) velocity at z = 0.242H; film thickness = 1.9 cm, 
E = 1.06×10 -5, c = 0.05. The solid lines represent analytical profiles, while the numerical and experimental 
data by Shadday et al. [1] are represented by broken lines and by dots, respectively. Velocities and radial 
position are normalized as in Figure 2. 

Figure 4. Radial distribution of the axial (a) and azimuthal (b) velocity at z = 0.438H. Same parameter values as 
in Figure 3. 
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the configuration considered, since ~ = E 1/4= 0.05. This phenomenon has also been 
reported by Shadday et al.: they have calculated the flow numerically from both the linear 
and the nonlinear basic equations, and obtained results that were very similar. It thus 
seems that weakly nonlinear flows are still governed by linear Stewartson-layer theory. 

It can be clearly observed from the velocity distribution shown in Figure 2a that the 
vertical velocity has a constant low value in the geostrophic interior region, with the 
largest velocities occurring in the shear layers. The Stewartson layers have typical 
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Figure 5. Radial distribution of the axial (a) and azimuthal (b) velocity at z = 0 . 6 3 4 H .  Same parameter values as 
in Figure 3. 

Figure 6. R a d i a l  distribution of the ax ia l  (a)  and azimuthal (b) velocity at z = 0 .83H.  Same parameter values as 
in Figure 3. 
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thicknesses LE 1/4= 0.5 cm and LE 1/3= 0.2 cm, which are small compared to the film 
thickness (4.22 cm). It is emphasized that the characteristic boundary-layer thicknesses 
are mathematically determined by putting I~ I = 1 and I ~/I = 1, respectively. In physical 
situations, however, the shear-layer thickness may appear to exceed the "typical" thick- 
ness by a factor of 4 or more. This can be seen in Fig. 2a, where the physical thicknesses 
of the E 1/3 layers at r = a and r = b measure 1.25 cm and 0.85 cm, respectively, which 
both are considerably larger than the above-mentioned typical thickness LE 1/3. 

In the thin-film case the Stewartson-layer thicknesses therefore become comparable to 
the film thickness (1.9 cm), and a distinct boundary between the various flow regions will 
no longer be visible. It has been pointed out in Section 4 how the solutions presented in 
Section 3 should be corrected for merging shear layers, in order to ensure that the shear 
stress at the free surface is zero. Composite velocity profiles for the 'thin-film case' have 
also been calculated according to (44) and (45), now being extended by the correction 
velocities (37), (40) and (42). Radial distributions of the axial and azimuthal velocities at 
the axial positions z / H  = 0.242, 0.438, 0.634, 0.83 are shown in Figures 3 to 6 which also 
present the numerical curves and the experimental data obtained by Shadday et al. [1]. In 
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Figure 7. Radial distribution of the axial velocity at z = 0.5H in films of single, double and triple thickness. 
Parameter values as in Figure 3; the single film thickness measures 1.9 cm. The broken lines represent numerical 
curves by Ribando and Shadday [16]. Arrows indicate free surface positions of the single and double thickness 
films. 
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general the analytically obtained velocity profiles agree well with the numerical curves, 
both in shape and amplitude. It appears that the discrepancies are largest (though still 
relatively small) near the free surface ~ = 0. The vertical velocity graphs clearly show a 
smooth merging of the Stewartson E 1/3 layers, due to the absence of a geostrophic flow 
region. 

Unfortunately, Shadday et al. [1] have not performed any velocity measurements in the 
thick-film case (Figure 2), so that a comparison between theoretical and experimental 
results cannot be made for this case. However, experimental velocity profiles are available 
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by Ribando and Shadday [16] are indicated by dots. 
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for the thin-film case (Figures 3-6), and they show reasonable agreement with the 
numerical  and analytical curves. The largest discrepancy occurs near the free surface, 
where the observed velocities are systematically smaller than those predicted numerically 
or  analytically. These lower values suggest a nonzero  shear stress at the air-fluid interface, 
but  it is hard  to explain this discrepancy conclusively without  knowing details of  the 
laboratory experiments. Apar t  f rom the deviations at the free surface, the observed axial 
velocity profiles agree fairly well with the theoretical curves, which approximately  lie 
within the range of  experimental uncertainty. An  exception is seen in Figure 6a, where the 
serious discrepancy occurs near the sidewall ( r  = b); an explanation is not  known. In 
general though, the qualitative and quantitative agreement between theory and experi- 
ment  is good, and large discrepancies as measured by Baker [10] in a different shear-layer 
configurat ion are only incidental. 

Recently, a paper  appeared by  Ribando  and Shadday  [16] in which they presented 
addit ional  numerical results for the partially-filled rotating-cylinder configuration;  they 
now examined the possibility of  using analytical expressions for the Ekman  conditions 
instead of  grid refinement and application of  the no-slip condit ions at the horizontal  
boundaries.  Numerical  calculations were performed for fluid films of  single, double  and 
triple thickness, the single thickness again being 1.9 cm. For  completeness those results 
are also compared  with the present analytical velocity profiles, see Figures 7 and 8. Again, 
the agreement between theoretical and numerical curves is excellent, once more  demon-  
strating the validity of  the linearized analytical description of  this weakly nonlinear flow 
situation. 
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